
CMSC 27100 - Discrete Mathematics NotesJack Sanderson
1. Propositional Logic

Definition. Proposition: a true or false statement.
Definition. Implication:

A B A ⇒ B
T T T
T F F
F T T
F F T

Definitions. The converse of p ⇒ q is q ⇒ p. Note that these are not equivalentstatements. The contrapositive of p ⇒ q is ¬q ⇒ ¬p. These are equivalent state-ments.
Definition: De Morgan’s Laws.

¬(p∨ q)=¬p∧¬q

¬(p∧ q)=¬p∨¬q

Definition: Negating Quanitifers. Suppose Q(x)= (∀x,R(x)). Then:
¬Q(x)= (∃x :¬R(x))

If, instead, Q(x)= (∃x,R(x)), then:
¬Q(x)= (∀x,¬R(x))
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2. Set Theory

Definition. A set is an unordered collection of objects.
Definition. Two sets are equal if and only if they have the same elements:

A = B ⇐⇒ (∀x, x ∈ A ⇐⇒ x ∈ B)

Definition. The cardinality of a set, |A|, is the number of elements in the set.
Definition. The power set of A, P (A), is the set of all its subsets.

Insight

A set of n elements has 2n subsets, as each item can either be included or excluded (twooptions for all n items).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition. The union of A and B = A∪B:
{x|x ∈ A∨ x ∈ B}

The intersection of A and B = A∩B:
{x|x ∈ A∧ x ∈ B}

Definition. The cartesian product A ×B contains all ordered pairs (x, y) where
x ∈ A, y ∈ B.

Insight

Note that in general, A×B ̸= B× A, however we do have that |A×B| = |B× A| = |A| · |B|.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem. If A×B ⊆ A×C, and A ̸=∅, then B ⊆ C.
Proof
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We will show that for any element b ∈ B, we also have that b ∈ C. Take an arbitrary a ∈ A,and consider (a,b) ∈ A×B. Because A×B ⊆ A×C, we have that (a,b) ∈ A×C. Thus, by thedefinition of the cartesian product, b ∈ C. □
Definition. For two sets A and B, A \ B is the set of all elements in A that are notin B.
Theorem. If (A \ B)∪ (B \ A)= A∪B, then A∩B =∅.

Proof

We will prove by contrapositive. If A∩B is not null, then ∃x ∈ A∩B. Any x in A∩B is alsoin A∪B. We know that x cannot be in A \ B as it is in B. Further, x cannot be in B \ A asit is in A. Thus, if A∩B ̸=∅, then (A \ B)∪ (B \ A) ̸= A∪B. □
Lemma. For all sets A and B:

A = (A \ B)∪ (A∩B)

⇒|A| = |A \ B|+ |A∩B|

Theorem. For all finite sets A and B, |A∪B| = |A|+ |B|− |A∩B|.
Proof

Notice that |A∪B| = |A \ B| + |B \ A| + |A∩B|. These three sets “partition” A∪B, as theyare disjoint and constitute it. We can rewrite this as:
|A∪B| = |A \ B|+ |B \ A|+ |A∩B|+ |A∩B|− |A∩B|

Now, using out lemma to rewrite |A∩B|, we get:
|A∪B| = |A \ B|+ |B \ A|+ |A|− |A \ B|+ |B|− |B \ A|− |A∩B|

= |A|+ |B|− |A∩B|

□
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3. Functions

Definition. A relation R with domain A and codomain B is a subset of A×B.
Definition. A relation R ⊆ A ×B is total if ∀a ∈ A,∃b ∈ B such that (a,b) ∈ R. Inother words, every point in the domain has a corresponding point in the codomain.
Definition. A relation R is single-valued if ∀a ∈ A,∀b1,b2 ∈ B, we have that:

(a,b1) ∈ R∧ (a,b2) ∈ R ⇒ b1 = b2

I.e., each input has only 1 output.
Definition. A function f : A → B is a total, single-valued relation with domain Aand codomain B.
Definition. A function f : A → B is injective (one-to-one) if ∀x, y ∈ A, f (x) = f (y) ⇒
x = y.

Insight

This is akin to applying single-valuedness to B; no two outputs can be the same.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition. A function f : A → B is surjective (onto) if ∀b ∈ B,∃a ∈ A such that
f (a)= b.

Insight

This is the reciprocal notion of totalness applied to B; every point in B must map back to
A.

4. Number Theory

Definition. “a divides b” or a|b ⇐⇒ ∃d : a ·d = b.
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Theorem. ∀a,b1,b2, a|b1 ∧a|b2 ⇒ a|(b1 +b2)

Proof

We know ∃d1,d2 : a ·d1 = b1 and a ·d2 = b2. Notice
b1 +b2 = ad1 +ad2

= a(d1 +d2)

If (b1 +b2)= a(d1 +d2), then a|(b1 +b2). □
Definition. A relation with respect to sets A,B is a function that maps A ×B →
{true, false}. R(a,b) is true or false depending on if (a,b) is in the relation.
Definition. A relation is transitive iff:

∀a,b, c, R(a,b)∧R(b, c)⇒ R(a, c)

Theorem. Divisibility is transitive:
∀a,b, c, a|b∧b|c ⇒ a|c

Proof

We know ∃d1 : a ·d1 = b and ∃d2 : b ·d2 = c. By plugging in for b, we get:
b ·d2 = c

(a ·d1) ·d2 = c

□

Definition. The set of divisors of n is denoted Div(n)= {a : a|n}.
Theorem.

a|b ⇒Div(a)⊆Div(b)

Proof
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It suffices to show that ∀a′ ∈Div(a),a′|b. We know that ∃d : a ·d1 = b, and we also see that
a′ ∈Div(a)⇒∃d2 : a′ ·d2 = a. Substituting for a:

a ·d1 = b

(a′ ·d2) ·d1 = b

Thus, all divisors of a also divide b if a|b. □
Definition. If m,n are Z+, then GCD(m,n) is the largest element of Div(m)∩Div(n)

Theorem: The Division Theorem. ∀n,d > 0, ∃!q, r such that n = d · q + r with
r ∈ [0,d). a

aNote ∃! denotes unique existence.
Insight

This is just long division. We have our dividend n, our divisor d, our quotient q, andremainder r. Notably, this decomposition is only unique when 0≤ r < d.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Proof: Nonconstructive Existence of the Division Theorem

Consider the set A = {n− d · q|q ∈ Z}, where d is a positive integer. This is the set of allpossible remainders, where A = Z. Because d ̸= 0, A must have a non-negative number.By the well-ordering principle, A must have a minimum non-negative number r.
Now we prove that r < d. FTSOC, assume r > d. Then r−d > 0, but this contradicts r beingthe minimum of A. □
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Proof: Uniqueness of the Division Theorem

FTSOC, suppose that for a fixed but arbitrary n,d > 0, ∃q1, q2, r1, r2 such that:
n = q1 ·d+ r1

n = q2 ·d+ r2

Then, by subtracting both sides:
0= q1 · r1 − q2 ·d− r2

= d(q1 − q2)+ r1 − r2 (∗)
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We know that d|0, but does d|(∗)? Yes, because:
d|(a+b)∧d|a ⇒ d|b

Thus, we have:
d|(d(q1 − q2)+ r2 − r2)∧d|(d(q1 − q2))⇒ d|(r1 − r2)If, however, d|(r1 − r2)—which we call (∗∗)—and r1, r2 < d, it must be that r1 − r2 = 0 ⇒

r1 = r2. If a larger number divides a smaller one, the smaller one must be 0.
So now we must also have that d(q1 − q2) = 0, as (∗) has become 0 = d(q1 − q2)+0. Butbecause d > 0, it must be that q1 − q2 = 0⇒ q1 = q2. □

Definition. ∀n,d > 0, n = q · d + r where 0 ≥ r < d, and this is unique. We nowdefine:
n div d = q

n mod d = r

Theorem: Bezout’s Identity. Suppose d =GCD(a,b). There exist integers x, y suchthat d = ax+by.
Proof

First, note that if a = b = 0, the GCD is not well defined, so one of a,b ̸= 0. Consider
S = {ax+by> 0 : x, y ∈Z}. This is a nonempty positive set, so by the well-ordering principle,it has a minimum element d = as+bt. We claim d =GCD(a,b).
First, we show d|a and d|b. When we divide a by d, we get a = dq+ r. We claim that
r ∈ S∪ {0}, as:

r = a−dq

= a− (as+bt)q

= a(1− qs)−b(qt)Notice that we have written r in the form ax+by, meaning it must be that r ∈ S or r = 0.However, d is the smallest positive integer in S, and r < d, so we must have that r = 0.
Now we prove d is the greatest of the common divisors. Take c ∈Div(a)∩Div(b). We know
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∃u,v : a = cu∧b = cv. From here,
d = as+bt

d = cus+ cvt

d = c(us+vt)

⇒ c|d
⇒ d > c or c = 0

Thus, d ≥ c, which proves that d is the greatest, as no divisor can be greater than d. □
Theorem: Euclid’s Algorithm. If d = GCD(a,b), with b ̸= 0 and r = a mod b, then
d =GCD(b, r).

Proof

We show Div(a)∩Div(b) = Div(b)∩Div(r). Let q = a div b, so a = q · b+ r. Now let z ∈Div(a)∩Div(b). Because z ∈ Div(a), we know z|a. Further, because z ∈ Div(b), we know
z|b ⇒ z|(q ·b). From here:

z|a∧ z|(q ·b)⇒ z|(a− qb)= r

If we take a new z ∈Div(b)∩Div(r), then:
z|(q ·b+ r)= a ⇒ z ∈Div(a)

Because we have defined GCD(a,b) = max(Div(a)∩Div(b)), and we now know Div(a)∩Div(b) =Div(b)∩Div(r), it must be that GCD(a,b) =GCD(b, r). In algorithmic form, where
a > b:
function gcd(a, b):

if b = 0:
return a

else:
gcd(b, a mod b)

□

Definition. If a,b,m ∈Z, with m > 0, we say a ∼= b mod m or a ∼=m b if m|(a− b), orequivalently, a mod m = b mod m.
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Theorem. Mod is an equivalence relation.
Proof

Reflexivity:
∀a,a ∼=m a, as m|(a−a)= 0.
Symmetry:
If a ∼=m b, then m|(a−b)⇒ m|(b−a)⇒ b ∼=m a. This is simply multiplication by −1.
Transitivity:
If a ∼=m b and b ∼=m c, we have m|(a−b) and m|(b− c). Thus, m|((a−b)+ (b− c))⇒ m|(a− c),meaning a ∼=m c.

Definition. ∀m > 0 and a ∈Z, define:
[a]m = {b|a ∼= b mod m}

Or, [a]m is the set of all integers with the same remainder a when divided by m.We define the following operations on these equivalence classes:
[a]m + [b]m = [a+b]m

[a]m · [b]m = [a ·b]m

There are proofs of the associativity of addition and working with the integers mod m inthe notes (3C). They don’t seem particularly important, though, so I will omit them fornow.
Definition. Two integers are relatively prime (or coprime) if their greatest commondivisor is 1.
Definition. An integer a has a multiplicative inverse mod m if ∃b : a · b ∼=m 1.Equivalently, if m|(a ·b−1).
Theorem. If integers m > 0 and a are relatively prime, then a has a multiplicativeinverse mod m.
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Proof

Recall Bezout’s identity: d = GCD(m,a) = n ·m+ b ·a. From this we know ∃n,b such that
n ·m+ b · a = 1, as m and a are relatively prime. Using our equivalence classes, we canshow:

[1]m = [n ·m+b ·a]m

= [n]m · [m]m + [b]m · [a]m

[1]m = [b ·a]mbecause [m]m = [0]m. Thus, a has a multiplicative inverse mod m of b. □
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corollary. If p is prime and a,b are integers such that p|(a ·b), then p|a or p|b.
Proof

Without loss of generality, say that p ∤ a. Thus, GCD(a, p) = 1. This means that ∃x, y :
x ·a+ y · p = 1 (Bezout’s Identity), and multiplying by b yields:

xab+ ypb = b

Notice that p|(xab) because p|(ab), and that p|(ypb). This means that p|b, as it dividesboth of the terms that sum to b. □
Theorem. If a,m are relatively prime, then the multiplicative inverse of a mod mis unique.

Proof

Suppose, for the sake of contradiction, that b, c are different multiplicative inverses of
a mod m. Some arithmetic gets us:

b ∼=m b ·1
∼=m b · (c ·a)
∼=m c · (b ·a)

Because b is a multiplicative inverse of a, we now have:
b ∼=m c ·1
b ∼=m c

□

10



Notation. We use a−1 to denote the multiplicative inverse of a mod m, when itexists.

Theorem: Chinese Remainder Theorem. Suppose m1,m2, ...,mk are pairwise rel-atively prime, and that c1, c2, ..., ck are integers. Then there exists a solution x to thesystem:
{x ∼=mi ci}

Proof: Existence, Constructive

Let n = m1 ·m2 ·...·mk. For each i ∈ {1,2, ...,k}, we define ni = n
mi

. Notice that ni is relativelyprime to mi, as each mi is relatively prime to all other mi, which are contained in ni. Wenow let {ai} be the set of all multiplicative inverses with respect to {ni}:
ai ·ni ∼=mi 1

We know these exist because relative primes have multiplicative inverses mod m, asproven 2 theorems ago.
We now define xi = ai ·ni. Note that we now have two cases: xi mod mi = 1, which wecall the match case, and xi mod m j = 0, which we call the mismatch case. These casesexist as when the i’s match, ai and ni are multiplicative inverses mod mi. When they donot match, m j|ni.Finally, we claim the solution to the system is:

x = c1x1 + c2x2 +·· ·+ ckxk

To see this, we look at the ith equation:
x ∼=mi ci

And we take the ith term of x:
x = cixi = ci · (ai ·ni)

From here we see that in the match case:
ci ·aini ∼=mi ci

Because, tautologically, aini mod ni = 1. In the mismatch case, however, we get:
c jx j ∼=mi 0
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Thus, for any i in the system, our x only has 1 match—and thus produces one value—whichis equal to ci mod mi which definitionally solves the x ∼=mi ci. □
Induction. The goal of induction: to prove a universal statement (note that here,
1= True):

∀n > 0,φ(n)= 1There are two main steps:1. Base case: φ(1)= 12. Inductive step:
∀n > 0,φ(n)= 1⇒φ(n+1)= 1

Theorem. The sum of the first n numbers can be writen as:
n∑

i=1
i = n(n+1)

2

Proof

Our base case is that φ(1)= 1. We know this is true as 1= 1(2)
2 . We now take the inductivestep. Suppose φ(n) is true, meaning:

n∑
i=1

i = n(n+1)
2

We now take φ(n+1):
n+1∑
i=1

i =
(

n∑
i=1

i

)
+n+1

= n(n+1)
2

+n+1

= (n+1)(
n
2
+1)

= (n+1)(n+2)
2

□
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Defintion: Strong Induction.

(∀n > 0,∀k : 0≤ k < n, (φ(k)= 1)⇒ (φ(n)= 1))⇒ (∀n > 0,φ(n)= 1)

I.e., if all k up to n are true, then n is true, and so all n are true.
Proof

By contraspositive. Suppose RHS is false, i.e., ∃n such that φ(n)= 0. This implies the set ofcounter-examples ({n|φ(n) = 1}) is nonempty. By the well-ordering principle, there existsa minimum counterexample. Everything smaller than this counterexample must be true,and we call this counterexample n0. So ∀k < n0,φ(k) = 1. But this contradicts the LHS,because this implies that φ(n0) ̸= 1. □
Theorem: Existence of a Prime Divisor. Every integer > 1 has a prime divisor.

Proof

Our base case is that 2|2. Our inductive assumption is that ∀2≤ j < k, there exists a prime
p such that p|( j). We now prove this holds for k. If k is prime, we are done. Otherwise,
k = a · b. We know that a and b fall into the set of all j, thus they must have a primedivisor. □

Corollary. There are infinitely many primes.
Proof

Consider any finite list of primes p1, p2, ..., pk. We will prove that some prime is missing.Let p = p1 ·p2 ·...·pk, and let n = p+1. We know that n must have a prime divisor q, whichmust be in our list of every prime. As a result we know q|p. But q also divides n, whichmeans that q must divide 1.
q|p∧ q|n ⇒ q|(n− p)⇒ q|1

This is impossible, and it means some prime must be missing from out list. □
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Lemma: Helpful Lemma. If p is prime and so are p1, p2, ...pk (not necessarilydistinct), if p|(pk · pk−1 · ... · p1), then p = pi for some i.
Proof

Base case: if we have 1 prime p1, and p|p1, then p = p1. Our inductive hypothesis willassume Helpful Lemma true for all k, and prove it for k+1.
We know p|pk+1 · pl · ... · p2 · p1, and that for a prime p, if p|(a ·b) then p|a or p|b. Supposethat a = p1 ·p2 ·...·pk, and b = pk+1. Because p divides the product of primes through pk+1,it must be that either p|a or p|b. If p|a, then p = pi for some i ∈ {1,2, ...,k}. If p|b, then
p = pk+1.

Lemma: Fundamental Theorem of Arithmetic. Every integer n > 1 can be writtenuniquely as a product of primes.
Proof: Uniqueness of the FTA

Suppose that prime factorizations aren’t unique. Let n be the least natural number withouta unique prime factorization:
n = p1 · p2 · ... · pk = p′

1 · p′
2 · ... · p′

kFrom this we have that p1|n. By the Helpful Lemma, we must have that pi = p′
j for some

i and j. But if we divide n by p1, we get a smaller number written in two different primefactorizations. We claimed, however, that we already had the smallest, and thus everyinteger > 1 must have a unique prime factorization. □
Definition. Define the factorial function (n!) as the product of all positive integers
≤ n.
Theorem: Wilson’s Theorem. For any prime p:

(p−1)!∼=p −1

Or equivalently,
p|((p−1)!−1)

Proof
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Consider x ∈ {1,2, ..., p−1}. Note that all of these numbers are relatively prime to p, whichmeans that each x has a unique multiplicative inverse mod p.
We claim that only 1 and p− 1 are self-inverse mod p. Being self inverse means that
x2 ∼=p 1, which implies that x2 −1 ∼=p 0. From here we see that p|(x−1)(x+1). As a result,we have that x ∼=p ±1, from which we get 1∼=p 1 and (p−1)∼=p −1. These are the only twosolutions to the equation, as the degree of x2 is two.
Now we consider the “middle terms” {2,3, ..., p−2}. These terms can be “married” intopairs with their multiplicative inverse. This is because multiplicative inverses must beless than p, and that’s the set we have.
We’re left with just 1 and p−1 after {2,3, ..., p−2} all go to 1. We see that 1 · (p−1)= p−1,and (p−1)∼=p −1. □

Lemma: Helpful Lemma 2. Let p be prime and a be such that GCD(a, p)= 1. Then,as sets:
{a ·1 mod p,

a ·2 mod p,

...,

a · (p−1) mod p}=
{1,2, ..., p−1}More compactly we can say that

{a ·1,a ·2, ...,a · (p−1)}= {1,2, ..., p−1}

where multiplication is done mod p.
Proof

First, each element in LHS is of the form a · j ≇p 0, because a and j are relatively prime to
p. As a result, each element is in {1,2, ..., p−1}.
Now we prove the elements of the LHS are distinct. Becuase GCD(a, p) = 1, there exists amultiplicative inverse a−1 for a. For the sake of contradiction, assume that (a · j)∼=p (a · j′),where j ̸= j′ (i.e., where j equals the a’s in the LHS). We can multiply both sides by a−1to get j ∼=p j′, which is a contradiction. Thus, each (a · j) mod p in the LHS is distinct andthe sets are equal. □
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Theorem: Fermat’s Little Theorem. For all primes p and integers a such thatGCD(a, p)= 1:
ap−1 ∼=p 1

Proof

Consider n ∼=p (a·1)(a·2)...(a·(p−1)). By Helpful Lemma 2, this is a reordering of (p−1)!, aswe know that the sets {a ·1,a ·2, ...,a · (p−1)} and {1,2, ..., p−1} are equivalent. By Wilson’sTheorem, we know that (p−1)!∼=p −1, which means that n ∼=p −1.
Alternatively, we can factor our the p−1 occurences of a:

n ∼=p ap−1 · (p−1)!

n ∼=p ap−1 ·−1

Finally, equating both expressions for n yields:
−1∼=p ap−1 ·−1

⇒ ap−1 ∼=p 1

□

5. Combinatorics

5.1. Permutations

Definition. A permutation of a set is an ordered arrangement of its elements.
For example, there are 6 permutations of the set {1, 2, 3}. In general, there are n! waysto arrange n elements. We can also use k-permutations, which are ordered subsets of size
k.

Definition. Let P(n, r) be the number of r-permutations of an n-element set.
Theorem.

P(n, r)= n · (n−1) · (n−2) · ... · (n− (r−1))

Proof
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We have n ways to choose the first item, n−1 ways to choose the second, and so on, untilwe have selected r items, at which point we will just have multiplied n− (r−1).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corollary. If n is positive and r ∈ [0,n], then
P(n, r)= n!

(n− r)!

Proof

The number of ways to order an n element set is n!. An alternative way of calculatingthis is first choosing any r elements (of which there are P(n, r) permutations of), and thenchoosing the remaining n− r elements (of which there are (n− r)! permutations of). Thus,
n!= P(n, r) · (n− r)!

⇒ P(n, r)= n!
(n− r)!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example. How many permutations of “ABCDEFGH” contain “ABC” consecutively?

To answer this problem, we view the letters as a set of: { ABC, D, E, F, G, H }, treating“ABC” as one letter. Thus, any permutation of this set works, giving us 6! permutations.

5.2. Combinations

Definition. Let C(n, r) be the number of subsets of size r of an n-element set.
Theorem. If n > 0 and r ∈ [0,n], then:

C(n, r)= n!
r!(n− r)!

Insight

Notice that for each combination of size r, there are r! permutations of it, meaning wecan derive our formula for combinations by dividing our permutation formula by r!.
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Proof

P(n, r)= C(n, r) ·P(r, r)

⇒ C(n, r)= P(n, r)
P(r, r)

= n!
r!(n− r)!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. A poker hand consists of 5 cards. How many distinct poker hands exist?
C(52,5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. A full house is a poker hand with a three of a kind and a two of a kind.How many distinct full house hands are there?
First, we calculate the ways to permute each “kind”, which is equal to P(13,2). We noticethat for the three of a kind, we can pick any three cards from the four, and the same forthe two of a kind, giving us:

P(13,2) ·C(4,3) ·C(4,2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example. A flush is a poker hand where all cards are of the same suit. How manyflushes exist?

Notice this amounts to chosing our suit, followed by any 5 of its 13 cards:
C(4,1) ·C(13,5)

5.3. Combinatorial Proofs

Definition. A combinatorial proof is a proof based on a counting argument, forexample proving equality between two numbers by providing two ways of countingthe same objects.
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Theorem. For n > 0, r ∈ [0,n]:
C(n, r)= C(n,n− r)

Proof

In order to count the number of size-r subsets of n, we can either enumerate them directly(as with C(n, r)), or we can enumerate their complements, i.e., “throw out” n−r elementsin C(n,n− r) ways, leaving us simply with r elements.

5.4. The Binomial Theorem

Theorem. For n ∈N, n > 0:
(x+ y)n =

n∑
i=0

(
n
i

)
xn−i yi

Where (n
i
)= C(n, i).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example. What is the coefficient of x11 y5 in (x+ y)16?

Using the binomial theorem, the coefficient is C(16,11), or equivalently, C(16,5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. What is the coefficient of x7 y4 in (x+2y)11?
24 · (11

7
)
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5.5. Binomial Identities

Theorem: Binomial Identities. For n > 0:
n∑

i=0

(
n
i

)
= (1+1)n = 2n

n∑
i=0

(−1)i

(
n
i

)
= (1−1)n = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem: Pascal’s Identity. (

n+1
k

)
=

(
n

k−1

)
+

(
n
k

)

Insight

We have n+1 rocks, and we want to count subsets of size k. One way is to fix a rock. Wecan either include or exclude this rock, but either way, we always choose from n rocks.
Proof

Fix s ∈ S and count subsets K of size k. If s ∈ K , we know that k−1 elements of K come fromthe set S− {s}. Notice that |S− {s}= n, and we choose k−1, which gets us ( n
k−1

). However,if s ∉ K , all k elements will come from the set S− {s}, which gives us (n
k
). Because thesepossibilities are disjoint, we simply add them to get our final result.

Insight

We can visualize Pascal’s Identity with Pascal’s Triangle:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20



Theorem: Vandermonde’s Identity. For 0< r ≤ n:(
m+n

r

)
=

r∑
k=1

(
m

r−k

)(
n
k

)

Proof

We can “break down” this formula as first taking all r of the subset from m and none from
n. Then it takes r−1 from m, and 1 from n, so on and so forth. We multiply “inside” eachof these pairs because the terms are dependent, but we add because the case of taking all
r from m is independent of taking r−1 from m.

Corollary. (
2n
n

)
=

n∑
k=0

(
n
k

)(
n
k

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem. Let 0< r ≤ n. (

n+1
r+1

)
=

n∑
j=r

(
j
r

)

Proof

Let’s say we are picking r+1 elements of S = {0,1, ...,m}, of size n+1. The smallest maxelement of a subset of size r+1 is r, and there is only one subset of S that has r as itsmax. In general, the number of subsets of S of size r+1 that have a largest element j ≥ ris C( j, r), as we fix the largest element j in the subset, and have a remaining r to chooseto get our total size r+1.

5.6. Generalized Permutations and Combinations

Example. How many ways can we select five bills from cash drawers that have aninfinite amount of 5, 10, 20, 50, and 100 dollar bills?
We can think of this problem in terms of “moves” that we must make, which work towardstwo goals: (a) taking 5 bills, and (b) making sure to visit each bill’s “drawer”. We mustperform (a) 5 times—as we must take 5 bills—and we must perform (b) 5 times, as we
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must “move to the next drawer” 5 times (1 to 5, 5 to 10, and so on). In total we thus have10 operations, and we want to select every possible subset in which we could take our 5bills: (
10
5

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem. For a set with n distinct elements and replacement, there are(
n+ r−1

r

)

r-combinations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. How many natural number solutions are there to:
x+ y+ z = 11

Once again, we have to “move variables” 2 times, and increment our counter 11 times,giving us (
13
11

)
total solutions.

Example. How many distinct permutations of the word “success” exist?
Proof

The word “success” has 7 letters, so if each were distinct, we would have 7! total permu-tations. However, there are 2 duplicate letters, meaning we must divide by the numberof ways to arrange those two:
= 7!

3! ·2!This concept has its own notation, defined below.
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Definition. The number of distinguishable permutation is given by multinomialcoefficients (i.e., (x1 + x2 + ...+ xk)n):
n!

n1! ·n2! · ... ·nk!
=

(
n

n1,n2, ...,nk

)

5.7. The Pigeonhole Principle

Theorem: The Pigeonhole Principle. Let A1, A2, ..., Am be disjoint sets so that
|⋃i A i| > m. Then there exists an A i so that |A i| ≥ 2.

Proof: By Contrapositive

If all |A i| ≤ 1, then ∣∣∣∣∣⋃i
A i

∣∣∣∣∣=∑
i
|A i| ≤

∑
i

1= m

Insight

The pigeonhole principle really just says that with n pigeons and at most n−1 holes, theremust be at least 1 hole with 2 pigeons.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corollary. Suppose A,B are finite sets where |A| > |B| and f : A → B. Then f cannotbe one-to-one.
This is simply because there are too few “holes” in B to hold all the “pigeons” in A,meaning there must be some element in B with at least 2 corresponding elements in A(thus making the function not one-to-one). □

Example. After a meeting, n people shake others hands. Prove that at least 2 peopleshook the same number of hands.
Let’s enumerate everyone in the set {0,1,2, ...,n−1}. Say person i shakes i hands. Thisactually can’t be! Someone can either shake n−1 hands (everybody but themself), or 0hands; it’s impossible for both to happen as someone shaking 0 hands implies that the

23



maximum becomes n−2 hands! So this means that we can either have the handshakes bein the integers {1,2, ...,n−1} or in {0,1, ...,n−2}. Either way, there are n−1 choices of thenumber of hands to shake, and n total people. By the pigeonhole principle, at least twopeople must shake the same number of hands.
Theorem: Generalized Pigeonhole Principle. Let A1, A2, ..., Am be disjoint setssuch that |⋃i A i| = n. Then ∃A i such that |A i| ≥ ⌈ n

k ⌉.
Proof: By Contrapositive.

Suppose for all i that |A i| < ⌈ n
k ⌉. This implies that |A i| < n

k ; because |A i| is always aninteger, if it is smaller than ⌈ n
k ⌉, it is also smaller than n

k . For example, (|A i| = 3) < ( n
k =

3.1)< (⌈ n
k ⌉ = 4). This implies that∣∣∣∣∣⋃i

A i

∣∣∣∣∣=∑
i

A i <
∑

i

n
k
= k(

n
k

)= n∣∣∣∣∣⋃i
A i

∣∣∣∣∣ ̸= n

□
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. A centipede needs 100 same-color socks from a random assortment ofred, green, and blue socks. How many must he draw to guarantee he receives 100same-color socks?
Our answer will be the least n such that ⌈ n

3 ⌉ = 100. This implies that n
3 > 99, so n > 297.Thus, our centipede needs to draw 298 socks by the generalized pigeonhole principle.

As a check, this implies that at least one set in |⋃i A i| = 298 must be:
A i ≥ ceil(298

3

)
> 99⇒ A i = 100
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6. Probability Theory

Definition. A probability space is a finite set Ω ̸= ∅ and a function Pr : Ω→ R.
∀ω ∈Ω, we have that

Pr[ω]≥ 0and ∑
ω∈Ω

Pr[ω]= 1

We call Ω the sample space and Pr the probability distribution.
Definition. An event is a subset of Ω: A ⊆Ω.The atomic events are singleton sets such that

Pr[{ω}]=Pr[ω]

We denote the probability of an event A as
Pr[A]= ∑

ω∈A
Pr[ω]

Definition. The uniform distribution over Ω sets Pr[ω]= 1
|Ω| for all ω.

Definition. Events A,B are disjoint if A∩B =∅.
Notice that if A1, A2, ..., Ak are disjoint subsets of Ω, then

Pr[A1 ∪ A2 ∪ ...∪ Ak]=Pr[A1]+Pr[A2]+ ...+Pr[Ak]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theorem. For any A and B,

Pr[A]+Pr[B]=Pr[A∪B]−Pr[A∩B]

which follows from simple inclusion-exclusion.
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Lemma.

Pr

[
k⋃

i=1
A i

]
≤

k∑
i=1

Pr[A i]

Insight

If the sets of all disjoint, these two values are equal, otherwise the right side overcountsthe atomic events and thus probability.

6.1. Conditional Probability

Definition. If A,B are events, the conditional probability of A relative to B is
Pr[A|B]= Pr[A∩B]

Pr[B]

Sorry that was a lot of definitions. But now we’re setup.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. When rolling 3 dice, what is the probability that the first die is 5, giventhat the sum is 9?
We let the event A be the first die being 5, and B be the sum of the three dice being 9.We look to compute

Pr[A|B]= Pr[A∩B]
Pr[B]For A∩B, there are three dice rolls that sum to 9 when the first value is 5: {5,2,2}, {5,1,3}, {5,3,1}.For B, there are 25 rolls that sum to 9 out of 63 possible. Thus, our answer is:

Pr[A|B]=
3
63

25
63

= 3
25
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6.2. Independence

Definition. Events A and B are independent if
Pr[A∩B]=Pr[A] ·Pr[B]

Definition. Events A and B are positively correlated if
Pr[A∩B]>Pr[A] ·Pr[B]

and they are negatively correlated if
Pr[A∩B]<Pr[A] ·Pr[B]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example. Consider a dice roll. Let A be the event that the roll is even, and B theevent that the roll is prime. Are these events correlated?

Our even rolls are: {2,4,6}, and our prime rolls are: {2,3,5}. Thus,
Pr[A∩B]=Pr[{2}]= 1

6
<Pr[A] ·Pr[B]= 1

2
· 1
2
= 1

4So these events are negatively correlated.
Definition. Events A i are pairwise independent if ∀i, j, A i and A j are independent.
Definition. Events A1, A2, ..., Ak are mutually independent if for all subsets of theevents, i.e., ∀I ⊆ {1,2, ...,k},

Pr

[⋂
i∈I

A i

]
= ∏

i∈I
Pr[A i]

Note that mutual independence is stronger than pairwise independence.
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6.3. Random Variables

Definition. A random variable is a function f :Ω→R where Ω is the sample space.
Definition. If X is a random variable, we define

Pr[X = r]=Pr[{ω ∈Ω|X (ω)= r}]

i.e., the probabilty that X = r is the probability of all atomic events ω that X mapsto r.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. Consider the probability space corresponding with flipping a fair coin 3times, where the random variable X counts the number of heads. What is Pr[X = 3]?
The event corresponding with three heads happens once out of eight, so Pr[X = 3]= 1

8 .

6.4. Bernoulli Trials

Definition. A Bernoulli Trial is a random variable B whose codomain is {0,1}. Wedefine the event {ω ∈Ω|B(ω)= 1} as a success, and B(ω)= 0 as a fail.
“The point of Bernoulli trials is to repeat them.” When repeated, we count the number ofsuccesses k in n trials, which itself is also a random variable!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example. Consider flipping a biased coin where Pr[H]= p, and Pr[T]= 1− p. Fromthis, define the random variable X where X ({H}) = 1 and X ({T}) = 0. After flipping
n coins, define

Y =∑
i

X i

For k ≤ n, what is Pr[Y = k]?
Notice that we have (n

k
) ways to get k heads out of n. We multiply this value by the
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probability of getting head k times and tails n−k times:(
n
k

)
pk(1− p)n−k

This is the probability distribution for a Bernoulli trial where we have k successes out of
n trials!

6.5. Expectation

Definition. Let X be a random variable in Ω. We define the expected value of Xas E[X ]= ∑
ω∈Ω

X (ω) ·Pr[ω]

Theorem: Linearity of Expectation. Let (Ω,Pr) be a probability space and
X1, X2, ..., Xn be random variables over Ω, with X =∑

i X i. Then:
E[X ]=E[X1 + X2 + ...+ Xn]=∑

i
E[X i]

In other words, the expectation of the sum is the sum of the expectations.
Proof

E[X ]= ∑
ω∈Ω

(X1(ω)+ X2(ω)+ ...+ Xn(ω)) ·Pr[ω]

= ∑
ω∈Ω

∑
i

X i(ω) ·Pr[ω]

=∑
i

∑
ω∈Ω

X i(ω) ·Pr[ω]

=∑
i

E[X i]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example. During a dinner party, n men check in their hats. The hat man turns outto be extremely lazy and gives the men their hats back randomly at the end. Whatis the expected number of men who get their own hat back?
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Let us define a random variable R as the number of men who get their hat back. We knowthat E[R]=
n∑

k=0
0 ·Pr[R = k]

This is difficult to calculate, as the order in which we distribute the hats matters (e.g.,giving the first man his hat back changes the rest of the calculation).
Instead, we can introduce an “indicator variable” X i, which equals 1 if the ith man getshis hat back, otherwise it equals 0. We know that

E[X i]= 1
nbecause the hat man gives the hats back uniformly and randomly. From this, we get:

E[R]=
n∑

i=1
E[X i]=

n∑
i=1

1
n
= 1

Theorem: Multiplicativity of Expectation If X and Y are independent randomvariables, E[XY ]=E[X ] ·E[Y ].
Proof

We know that E[XY ]= ∑
x,y∈Ω

X (x)Y (y)Pr[X = x∩Y = y]

And if X and Y are independent random variables over Ω, then
Pr[X = x∩Y = y]=Pr[X = x] ·Pr[Y = y]

Plugging this into our expected value equation:
E[XY ]= ∑

x,y∈Ω
X (x)Y (y)Pr[X = x]Pr[Y = y]

E[XY ]= ∑
x,y∈Ω

X (x)Pr[X = x] ·Y (y)Pr[Y = y]

E[XY ]=
( ∑

x∈Ω
X (x)Pr[X = x]

)( ∑
y∈Ω

Y (y)Pr[Y = y]

)
E[XY ]=E[X ] ·E[Y ]
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6.6. Markov’s Inequality

Theorem: Markov’s Inequality. If X is a non-negative random variable, then
∀a > 0:

Pr[X ≥ a]≤ E[x]
aAlternatively, if we set a = k ·E[X ], then:

Pr
[
X ≥ k ·E[X ]

]≤ 1
k

Insight

The second way of interpreting Markov’s inequality is hopefully more intuitive; the prob-ability of getting a value k times larger than the expected value is simply 1
k .

Proof

We know that E[X ]≥ ∑
ω∈Ω,X (ω)≥a

X (ω)Pr[ω]

This is because by setting a lower bound for X , we can only make the expected valuelarger (as X is non-negative). From here, we know that
E[X ]≥ ∑

ω∈Ω,X (ω)≥a
a ·Pr[ω]

because again, we make the summation smaller by multiplying by only the minimumpossible output of X . This implies that
E[X ]≥ a

∑
ω∈Ω,X (ω)≥a

Pr[ω]

E[X ]≥ aPr[X ≥ a]E[X ]
a

≥Pr[X ≥ a]
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6.7. Variance

Definition. Let X be a random variable in the probability space (Ω,Pr). We define
Var(X )=E[(X −E[X ])2]

= ∑
ω∈Ω

(X (ω)−E[X ])2 ·Pr[ω]

Definition. We define standard deviation, σ(X ) as pVar(X ).
Theorem. Var(X )=E[X2]−E[x]2

Proof

Var(X )= ∑
ω∈Ω

(X (ω)−E[X ])2 ·Pr[ω]

= ∑
ω∈Ω

(
(X (ω)2 −2X (ω)E[X ]+E[X ]2) ·Pr[ω]

)
= ∑
ω∈Ω

(
X (ω)2 Pr[ω]

)−2E[X ] · ∑
ω∈Ω

X (ω)Pr[ω]+E[X ]2 · ∑
ω∈Ω

Pr[ω]

=E[X2]−2E[X ]2 +E[X ]2

=E[X2]−E[X ]2

Theorem: Independent Variables have Linear Variances. If X and Y are inde-pendent, Var(X +Y )=Var(X )+Var(Y )

Proof

Var(X +Y )=E[(X +Y )2]−E[X +Y ]2

=E[X2]+2E[XY ]+E[Y 2]−E[X ]2 −2E[X ]E[Y ]−E[Y ]2

=E[X2]−E[X ]2 +E[Y 2]−E[Y ]2

=Var(X )+Var(Y )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Example. Let the random variable X be the sum of two dice rolls. What is Var(X )?
Let X i be the sum of one dice roll. We know that E[X ] = 2E[X i] = 7. From, this, we cancompute: Var(X i)=E[X2

i ]−E[X i]2

=∑
i

i2

6
−

(
7
2

)2

= 35
12Which implies that Var(X )= 2 · 35

12
= 35

6

6.8. Chebyshev’s Inequality

Definition: Chevbyshev’s Inequality. Let X be a random variable. For all a > 0:
Pr[|X −E[X ]| ≥ a]≤ Var(X )

a2

Proof

This is simply Markov’s inequality where Y = (X −E[X ])2. We see that E[Y ]=Var(X ), andapply Markov’s inequality with a = a2:
Pr[Y ≥ a2]≤ E[Y ]

a2

From here we can plug in Y = (X −E[X ])2, and notice that if (X −E[X ])2 ≥ a2, then |X −E[X ]| ≥ a, getting us:
Pr[|X −E[X ]| ≥ a]≤ Var(X )

a2
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6.9. Law of Total Probability

Theorem: Law of Total Probability. Given disjoint events H1,H2, ...,Hm that par-tition Ω and some other event A:
Pr[A]=

m∑
i=1

Pr[A|Hi] ·Pr[Hi]

Proof

We can write A as a union of {A∩Hi} for each i, since all Hi are disjoint and partition thesample space. This implies that
Pr[A]=

m∑
i=1

Pr[A∩Hi]

=
m∑

i=1
Pr[A|Hi] ·Pr[Hi]

7. Asymptotics

First we must discuss how we should measure the complexity of an algorithm. To do so,we generally make two choices. The first is that we care more about worst-case behavior,although sometimes average-case behavior could be a better measure. The second is thatwe’re generally interested in how many steps an algorithm takes as a function of its inputlength, i.e., as the length of the input grows, how does the running time scale.
Definition. Let f , g :N→R. We say

f (x)=O(g(x))

if there exist c,k such that
∀x ≥ k, | f (x)| ≤ c · |g(x)|

Insight

This means that once x is large enough (past a certain k), value of f scale within a constantof g.
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Example. x2 +2x+1=O(x2).
We know that x2+2x+1≤ x2+3x2+x2, but the RHS is simple 4x2, which is within a constantof x2.

Definition. We say that
f (x)=Ω(g(x))if there exists constants c,k such that

∀x ≥ k, | f (x)| ≥ c · |g(x)|

Definition. We say that f (x)=Θ(g(x)) if f is both O(g) and Ω(g).
This is only true for functions that are constants of each other. For example, f (n) = 2n is
O(n) and Ω(n), while f (n)= logn is O(n) but not Ω(n).

8. Graphs

Definition. A graph G = (V ,E) is a set of vertices V and edges E. Each edge is
(vi,v j) for vi,v j ∈V .
Definition. Two vertices are adjacent if (v1,v2) ∈ E.

Graphs can be directed or undirected. In a directed graph, (v1,v2) ̸= (v2,v2).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition. The degree of a vertex v is the number of edges with v as an endpoint.A digraph has an “indegree” and an “outdegree”.
Note that we count self loops (vi,vi) twice when counting degree.
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Lemma: Handhsaking Lemma.∑
v∈V

degree(v)= 2|E|

Insight

Every edge comes from one vertex and goes to another, so the total degree of the graphis simply two times the number of edges.
Definition. A walk of length k from vertex a to b is defined by

a = v1,v2, ...,vk = b

A closed walk has the same start and end vertex.
Definition. A path is a walk where no vertex is used more than once, and a cycle isa closed path.
Definition. A complete graph Kn is an undirected graph where all pairs of verticesare connected by an edge (of which there are (n

2
) total).

8.1. Graph Isomorphism

Definition. An isomorphism between G1,G2 is a bijection f : V1 → V2 so that ver-tices a,b are adjacent iff f (a) and f (b) are adjacent.
Graph isomorphism is what we consider a hard problem; there are no efficient (polyno-mial time) algorithms to solve it. We can solve it inefficiently by enumerating all possiblebijections from G1 to G2, but there are n! total, which is far from polynomial time. Lás-zló Babai (UChicago prof!) has the best known solution, which solves the problem in
O(2(logn)c

) time.
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9. Complexity Theory

Complexity theory is the study of the hardness of problems. There are two major cate-gories we’re concerned with:
• P = problems solvable by polynomial-time algorithms
• NP = nondeterministic polynomial-time solvable; given a solution, we can check itin polynomial time.

We know that P is contained in NP, but whether NP is contained in P is the biggest openproblem in theoretical computer science.
Some problems are “NP-Complete”. Solving one of these problems would let us solve
any NP-hard problem. We don’t think factoring is NP-complete (which is good for ourencryption...).
And those are the notes! I wish we got to more on graph theory an asymptotics but overallgood class. There are probably lots of typos and I definitely didn’t format this LaTeX docvery well, but I’m definitely going to improve on the latter going forward.
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My Definition. This is my definition
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

My Theorem. This is my theorem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example X. Here is an example.
Problem X. This is the problem. Math is involved!

1+1= 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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